<delect id="vb7bx"></delect>

      <object id="vb7bx"><option id="vb7bx"><small id="vb7bx"></small></option></object>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>
      <i id="vb7bx"><option id="vb7bx"><listing id="vb7bx"></listing></option></i>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>

      |本期目錄/Table of Contents|

      [1]姜世杰,李志剛,李軍.凹槽狀小翼對渦輪動葉葉頂氣動和傳熱性能的影響[J].西安交通大學學報,2019,53(09):7-14+41.[doi:10.7652/xjtuxb201909002]
       JIANG Shijie,LI Zhigang,LI Jun.Effects of Squealer Winglet on the Aerodynamic and Heat Transfer Performances of Turbine Rotor Blade Tip[J].Journal of Xi'an Jiaotong University,2019,53(09):7-14+41.[doi:10.7652/xjtuxb201909002]
      點擊復制

      凹槽狀小翼對渦輪動葉葉頂氣動和傳熱性能的影響(PDF)

      《西安交通大學學報》[ISSN:0253-987X/CN:61-1069/T]

      卷:
      53
      期數:
      2019年第09期
      頁碼:
      7-14+41
      欄目:
      出版日期:
      2019-09-10

      文章信息/Info

      Title:
      Effects of Squealer Winglet on the Aerodynamic and Heat Transfer Performances of Turbine Rotor Blade Tip
      作者:
      姜世杰 李志剛 李軍
      西安交通大學能源與動力工程學院, 710049, 西安
      Author(s):
      JIANG Shijie LI Zhigang LI Jun
      School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
      關鍵詞:
      渦輪動葉 凹槽狀葉頂 凹槽狀小翼結構 氣動性能 數值模擬
      Keywords:
      turbine rotor blade squealer tip squealer winglet structure aerodynamic performance numerical simulation
      分類號:
      TK474.7
      DOI:
      10.7652/xjtuxb201909002
      摘要:
      針對葉頂間隙的高速泄漏流及復雜的流動問題,采用數值求解三維RANS方程和k-ω湍流模型方法,研究了凹槽狀小翼結構對渦輪級動葉葉頂傳熱特性和氣動性能的影響。數值獲得的葉頂表面傳熱系數分布和實驗數據吻合良好,驗證了數值方法的可靠性。對比分析了葉頂壓力側、葉頂吸力側和葉頂兩側凹槽狀小翼結構與無小翼凹槽狀葉頂的氣動傳熱性能,研究結果表明,相比于無小翼凹槽狀葉頂結構:葉頂壓力側、吸力側和兩側凹槽狀小翼結構的葉頂表面平均傳熱系數分別降低了12.2%、17.1%和19.8%,葉頂兩側凹槽狀小翼結構最大程度降低了凹槽狀葉頂間隙的泄漏流量,減弱了壓力側角渦和刮削渦,進而降低了凹槽狀葉頂的傳熱系數; 壓力側、吸力側和兩側凹槽狀小翼結構的動葉總壓損失系數分別增加了8.5%、降低了8.5%和降低了2.5%。吸力側凹槽狀小翼結構能有效降低凹槽狀葉頂的傳熱系數,并且減少氣動損失,具有最佳的氣熱性能。
      Abstract:
      Effects of squealer winglet structure on the heat transfer characteristics and aerodynamic performance of turbine rotor blade tip are numerically investigated using Reynolds-averaged Navier-Stokes(RANS)equation and k-ω turbulence model.Numerical results of the heat transfer coefficients distribution at rotor blade tip agree well with the experimental data and the reliabilty of this numerical method is validated.The numerical results show that the average heat transfer coefficients of rotor blade tip with squealer winglet structure on the pressure side or suction side, as well as on both pressure and suction sides, are decreased by 12.2%, 17.1% and 19.8%, respectively, in comparison with those of traditional squealer tip.Squealer winglet structure on the pressure and suction sides of the rotor blade tip can decrease the tip leakage flow and weaken the influence of corner and scraping vortexes near the pressure side.This flow behavior also decreases the heat transfer coefficient of rotor blade tip.In addition, the total pressure loss coefficients of rotor blade are increased by 8.5% when pressure side has squealer winglet structure, and decreased by 8.5% and 2.5% when suction side has squealer winglet structure and both sides have squealer winglet structures, respectively in comparison with traditional squealer tip profile.The suction side with squealer winglet structure can effectively decrease the heat transfer coefficient and aerodynamic loss.Finally, a tradeoff in the aerothermal performance of the suction side with squealer winglet structure at the rotor blade squealer tip is obtained.

      參考文獻/References:

      [1] TOWN J, STRAUB D, BLACK J, et al.State-of-the-art cooling technology for a turbine rotor blade [J].ASME Journal of Turbomachinery, 2018, 140(7): 071007.
      [2] BUNKER R S.Axial turbine blade tips: function, design, and durability [J].Journal of Propulsion and Power, 2006, 22(2): 271-285.
      [3] 高杰, 鄭群, 岳國強, 等.燃氣輪機渦輪葉頂間隙氣熱技術研究進展 [J].航空學報, 2017, 38(9): 71-101.
      GAO Jie, ZHENG Qun, YUE Guoqiang, et al.Research progress on turbine blade tip aerodynamics and heat transfer technology for gas turbines [J].Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 71-101.
      [4] KWAK J S, AHN J, HAN J C, PANG L C, et al.Heat transfer coefficient on the squealer tip and near squealer tip regions of a gas turbine blade [J].Journal of Heat Transfer, 2003, 125(4): 778-787.
      [5] 鐘兢軍, 魏曼, 陸華偉.壓力面小翼對渦輪葉柵不同間隙下流場影響的實驗 [J].航空動力學報, 2016, 31(1): 84-91.
      ZHONG Jingjun, WEI Man, LU Huawei.Experiment on effect of pressure-side winglet on flow field in turbine cascade at different tip clearances [J].Journal of Aerospace Power, 2016, 31(1): 84-91.
      [6] 張敏, 劉艷, 賀纓.動葉葉頂結構對1.5級渦輪氣動性能影響的數值研究 [J].工程熱物理學報, 2018, 39(6): 1235-1243.
      ZHANG Min, LIU Yan, HE Ying.Numerical investigation about the effect of rotor tip geometries on the aerodynamic performance for a one-half stage turbine [J].Journal of Engineering Thermophysics, 2018, 39(6): 1235-1243.
      [7] AZAD G S, HAN J C, BUNKER R S, et al.Effect of squealer geometry arrangement on a gas turbine blade tip heat transfer [J].Journal of Heat Transfer, 2002, 124(3): 452-459.
      [8] 楊佃亮, 豐鎮平.葉頂形狀對動葉頂部流動和傳熱的影響研究 [J].西安交通大學學報, 2008, 42(5): 537-541.
      YANG Dianliang, FENG Zhenping.Effect of squealer geometry arrangements on tip leakage flow and heat transfer for turbine blade [J].Journal of Xi'an Jiaotong University, 2008, 42(5): 537-541.
      [9] COULL J D, ATKINS N R, HODSON H P.Winglets for improved aerothermal performance of high pressure turbines [J].ASME Journal of Turbomachinery, 2014, 136(9): 091007.
      [10] ZOU Z P, SHAO F, LI Y R, et al.Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance [J].Energy, 2017, 138: 167-184.
      [11] 黃琰, 晏鑫, 何坤, 等.壓力面側小翼結構對凹槽葉頂冷卻傳熱性能的影響 [J].西安交通大學學報, 2017, 51(7): 51-56.
      HUANG Yan, YAN Xin, HE Kun, et al.Effect of pressure side winglet on film cooling and heat transfer performance of blade squealer tip [J].Journal of Xi'an Jiaotong University, 2017, 51(7): 51-56.
      [12] ZHONG F P, ZHOU C.Effects of tip gap size on the aerodynamic performance of a cavity-winglet tip in a turbine cascade [J].ASME Journal of Turbomachinery, 2017, 139(10): 101009.
      [13] ZHONG F P, ZHOU C, MA H, et al.Heat transfer of winglet tips in a transonic turbine cascade [J].Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 012605.
      [14] ZHOU C, ZHONG F P.A novel suction-side winglet design philosophy for high-pressure turbine rotor tips [J].ASME Journal of Turbomachinery, 2017, 139(11): 111002.
      [15] KWAK J S, HAN J C.Heat-transfer coefficients of a turbine blade-tip and near-tip regions [J].Journal of Thermophysics and Heat Transfer, 2003, 17(3): 297-303.
      [16] LEDEZMA G A, ALLEN J, BUNKER R S.An experimental and numerical investigation into the effects of squealer blade tip modifications on aerodynamic performance [C]∥ASME 2013 Turbine Blade Tip Symposium.New York, USA: ASME, 2013: V001T03A 002.
      [17] YAN X, HUANG Y, HE K, et al.Numerical investigations into the effect of squealer-winglet blade tip modifications on aerodynamic and heat transfer performance [J].International Journal of Heat and Mass Transfer, 2016, 103: 242-253.
      [18] YAN X, HUANG Y, HE K.Investigations into heat transfer and film cooling effect on a squealer-winglet blade tip [J].International Journal of Heat and Mass Transfer, 2017, 115: 955-978.

      備注/Memo

      備注/Memo:
      收稿日期: 2019-03-25。作者簡介: 姜世杰(1995—),男,博士生; 李軍(通信作者),男,教授,博士生導師;痦椖: 國家自然科學基金資助項目(51776151)。
      更新日期/Last Update: 2019-09-04
      秒速赛车开奖官网