<delect id="vb7bx"></delect>

      <object id="vb7bx"><option id="vb7bx"><small id="vb7bx"></small></option></object>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>
      <i id="vb7bx"><option id="vb7bx"><listing id="vb7bx"></listing></option></i>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>

      |本期目錄/Table of Contents|

      [1]馬登騫,張元橋,李軍,等.考慮刷絲變形的后夾板結構對刷式密封泄漏和傳熱特性影響的研究[J].西安交通大學學報,2019,53(09):15-25.[doi:10.7652/xjtuxb201909003]
       MA Dengqian,ZHANG Yuanqiao,LI Jun,et al.Effects of Backing Plate Structure on Leakage and Heat Transfer Characteristics of Brush Seals Considering Bristle Pack Deformation[J].Journal of Xi'an Jiaotong University,2019,53(09):15-25.[doi:10.7652/xjtuxb201909003]
      點擊復制

      考慮刷絲變形的后夾板結構對刷式密封泄漏和傳熱特性影響的研究(PDF)

      《西安交通大學學報》[ISSN:0253-987X/CN:61-1069/T]

      卷:
      53
      期數:
      2019年第09期
      頁碼:
      15-25
      欄目:
      出版日期:
      2019-09-10

      文章信息/Info

      Title:
      Effects of Backing Plate Structure on Leakage and Heat Transfer Characteristics of Brush Seals Considering Bristle Pack Deformation
      作者:
      馬登騫 張元橋 李軍 晏鑫
      西安交通大學葉輪機械研究所, 710049, 西安
      Author(s):
      MA Dengqian ZHANG Yuanqiao LI Jun YAN Xin
      Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, China
      關鍵詞:
      刷式密封 后夾板結構 刷絲變形 泄漏流氣動力 傳熱
      Keywords:
      brush seal backing plate structure bristle pack deformation leakage flow aerodynamic force heat transfer
      分類號:
      TK474.7
      DOI:
      10.7652/xjtuxb201909003
      摘要:
      采用基于非線性Darcian多孔介質模型的三維RANS方程耦合有限元分析接觸模型的數值方法,建立了考慮泄漏流氣動力、刷絲間摩擦力以及刷絲與前后夾板間相互作用的刷絲變形預測模型,并對比分析了3種后夾板結構對刷式密封泄漏特性、力學特性和傳熱特性的影響。所建模型可為刷式密封剛化效應、摩擦熱效應的研究以及先進刷式密封的設計提供一定的技術支撐。數值計算得到的刷式密封泄漏量與實驗測量數據吻合良好,驗證了數值方法的可靠性。研究結果表明:相比于典型后夾板結構的刷式密封,后夾板環形槽結構對泄漏量及壓力分布影響較小; 刷絲束所受到的軸向氣動力隨著壓比的增大近似呈線性增大; 后夾板環形槽增加了下游刷絲束的壓力,減小了刷絲軸向變形量,可有效防止刷絲發生剛化效應,降低泄漏氣流對刷絲束造成的擾動; 刷式密封高溫區出現在刷絲束與轉子表面接觸處,后夾板環形槽結構可有效改善刷絲束與轉子內部的溫度分布。
      Abstract:
      A prediction model of bristle pack deformation in consideration of the leakage flow aerodynamic force, the frictional force between bristles, and the interaction between bristle pack and front or backing plate was presented.The three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations based on non-linear Darcian porous medium model and combined with finite element analysis contact model were applied to analyze the effects of three different backing plate structures on the leakage flow, tip force and heat transfer characteristics of the brush seal.The numerical results of leakage flow rate of brush seal with typical backing plate structure agree well with the experimental data, which verifies the reliability of this numerical method.The results show that the influences of the backing plate with annular groove on the leakage flow and pressure distribution of brush seal are small compared with typical backing plate structure.The axial aerodynamic force acting on the bristle pack increases linearly with the pressure ratio.The annular groove structure can increase the static pressure on the downstream bristles, decrease the axial deformation of the bristle pack and reduce the stiffness effect.In addition, the annular groove structure can weaken the disturbance caused by irregular leakage flow on the bristles.The high temperature region is located around the bristle-rotor contact area.The annular groove can effectively improve the temperature distributions of the bristle pack and rotor.

      參考文獻/References:

      [1] CHUPP R E, HENDRICKS R C, LATTIME S B, et al.Sealing in turbomachinery [J].Journal of Propulsion and Power, 2006, 22(2): 313-349.
      [2] DINC S, DEMIROGLU M, TURNQUIST N, et al.Fundamental design issues of brush seals for industrial applications [J].ASME Journal of Turbomachinery, 2002, 124(2): 293-300.
      [3] TURNER M T, CHEW J W, LONG C A.Experimental investigation and mathematical modeling of clearance brush seals [J].Journal of Engineering for Gas Turbines and Power, 1998, 120(3): 573-579.
      [4] 孫曉萍, 李衛東, 劉曉遠.刷式密封設計與試驗研究 [J].航空發動機, 2005, 31(2): 17-19.
      SUN Xiaoping, LI Weidong, LIU Xiaoyuan.Design and test of brush seal [J].Aeroengine, 2005, 31(2): 17-19.
      [5] DEVILLE L, ARGHIR M.Experimental analysis of small diameter brush seals and comparisons with theoretical predictions [J].Journal of Tribology, 2019, 141(1): 012201.
      [6] BAYLEY F J, LONG C A.A combined experimental and theoretical study of flow and pressure distributions in a brush seal [J].Journal of Engineering for Gas Turbines and Power, 1993, 115(2): 404-410.
      [7] LI J, QIU B, FENG Z P.Experimental and numerical investigations on the leakage flow characteristics of the labyrinth brush seal [J].Journal of Engineering for Gas Turbines and Power, 2012, 134(10): 102509.
      [8] 邱波, 李軍, 馮增國, 等.兩級刷式密封泄漏特性的實驗與數值研究 [J].西安交通大學學報, 2013, 47(7): 7-12.
      QIU Bo, LI Jun, FENG Zengguo, et al.Experimental and numerical investigations of the leakage characteristics of two-stage brush seal [J].Journal of Xi'an Jiaotong University, 2013, 47(7): 7-12.
      [9] DOGU Y, BAHAR A S, SERTÇAKAN M C, et al.Computational fluid dynamics investigation of brush seal leakage performance depending on geometric dimensions and operating conditions [J].Journal of Engineering for Gas Turbines and Power, 2016, 138(3): 032506.
      [10] HENDRICKS R, PROCTOR M, SCHLUMBERGER J, et al.Some preliminary results of brush seal/rotor interference effects on leakage at zero and low rpm using a tapered-plug rotor [C]∥27th Joint Propulsion Conference.Reston, VA, USA: AIAA, 1991: 15.
      [11] LI J, YANG J D, SHI L Q, et al.Analytical investigations on the contact force between bristle packs and shaft surface of brush seals [C]∥ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, New York, USA: ASME, 2012: 2211-2218.
      [12] 孫丹, 劉寧寧, 胡廣陽, 等.考慮刷絲變形的刷式密封流場特性與力學特性流固耦合研究 [J].航空動力學報, 2016, 31(10): 2544-2553.
      SUN Dan, LIU Ningning, HU Guangyang, et al.Fluid-structure interaction investigation on the flow field and mechanical characteristic in brush seals with bristle deflections [J].Journal of Aerospace Power, 2016, 31(10): 2544-2553.
      [13] ZHANG Y Q, LI J, YAN X, et al.Experimental and numerical investigations on leakage flow characteristics of two kinds of brush seals [C]∥ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition.New York, USA: ASME, 2018: V05BT15 A026.
      [14] 朱宗舉.刷式密封的設計與應用 [J].燃氣輪機技術, 2005, 18(3): 68-72.
      ZHU Zongju.Design and application of brush seals [J].Gas Turbine Technology, 2005, 18(3): 68-72.
      [15] CRUDGINGTON P, BOWSHER A.Brush seal blow down [C]∥39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.New York, USA: ASME, 2003: 4697.
      [16] DEMIROGLU M, TICHY J A.An investigation of heat generation characteristics of brush seals [C]∥ASME Turbo Expo 2007: Power for Land, Sea, and Air.New York, USA: ASME, 2007: 1261-1270.
      [17] DEMIROGLU M, GURSOY M, TICHY J A.An investigation of tip force characteristics of brush seals [C]∥ASME Turbo Expo 2007: Power for Land, Sea, and Air, New York, USA: ASME, 2007: 1249-1260.
      [18] DEVILLE L, ARGHIR M.Experimental analysis of small diameter brush seals and comparisons with theoretical predictions [J].Journal of Tribology, 2019, 141(1): 012201.
      [19] 翁一武, 聞雪友, 翁史烈.燃氣輪機技術及發展 [J].自然雜志, 2017, 39(1): 43-47.
      WENG Yiwu, WEN Xueyou, WENG Shilie.Gas turbine technology and development [J].Chinese Journal of Nature, 2017, 39(1): 43-47.

      備注/Memo

      備注/Memo:
      收稿日期: 2019-02-15。作者簡介: 馬登騫(1994—),男,博士生; 李軍(通信作者),男,教授,博士生導師;痦椖: 國家重點研發計劃資助項目(2017YFB0601804)。
      更新日期/Last Update: 2019-09-04
      秒速赛车开奖官网