<delect id="vb7bx"></delect>

      <object id="vb7bx"><option id="vb7bx"><small id="vb7bx"></small></option></object>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>
      <i id="vb7bx"><option id="vb7bx"><listing id="vb7bx"></listing></option></i>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>

      |本期目錄/Table of Contents|

      [1]張周強,王飛雷,胥光申,等.采用石墨烯/聚二甲基硅氧烷的可調光柵設計及仿真計算[J].西安交通大學學報,2019,53(09):129-136.[doi:10.7652/xjtuxb201909017]
       ZHANG Zhouqiang,WANG Feilei,XU Guangshen,et al.Design and Simulation of Tunable Grating Based on Graphene Nanoplatelet/Polydimethylsiloxane Composite[J].Journal of Xi'an Jiaotong University,2019,53(09):129-136.[doi:10.7652/xjtuxb201909017]
      點擊復制

      采用石墨烯/聚二甲基硅氧烷的可調光柵設計及仿真計算(PDF)

      《西安交通大學學報》[ISSN:0253-987X/CN:61-1069/T]

      卷:
      53
      期數:
      2019年第09期
      頁碼:
      129-136
      欄目:
      出版日期:
      2019-09-10

      文章信息/Info

      Title:
      Design and Simulation of Tunable Grating Based on Graphene Nanoplatelet/Polydimethylsiloxane Composite
      作者:
      張周強 王飛雷 胥光申 劉學婧 曹亞斌 閔渭興
      西安工程大學機電工程學院, 710600, 西安
      Author(s):
      ZHANG Zhouqiang WANG Feilei XU Guangshen LIU Xuejing CAO Yabin MIN Weixing
      School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710600, China
      關鍵詞:
      可調光柵 石墨烯/聚二甲基硅氧烷 光驅動 光柵周期
      Keywords:
      tunable grating GNP/PDMS light drive grating period
      分類號:
      TB332
      DOI:
      10.7652/xjtuxb201909017
      摘要:
      針對氰化氫氣體在近紅外波段具有吸收峰這一現象,設計了一種基于石墨烯(GNP)/聚二甲基硅氧烷(PDMS)復合材料和PDMS材料的近紅外光驅動可調透射光柵。采用數值模擬的方法研究了在近紅外光驅動條件下光柵周期和衍射波長的變化規律,建立了光驅動部分與光柵部分為一體的光柵模型,模擬了在不同方向進行光驅動時光柵周期受到的影響。研究結果表明:柵線方向與驅動方向一致時,光柵周期隨光驅動時間的增加而減小,且在光柵中部的變化幅度高于兩側,最大可調范圍達到21.3 nm; 柵線與驅動方向垂直時,光柵周期隨光驅動時間的增加而增大,且在光柵中部的變化幅度低于兩側,最大可調范圍達到100.98 nm; 兩種方式均能滿足對氰化氫氣體的檢測,但柵線垂直于驅動方向的可調光柵的光柵周期變化幅度更大。
      Abstract:
      A near-infrared light-driven tunable transmission grating based on graphene nanoplatelet(GNP)/polydimethylsiloxane(PDMS)composite and PDMS is designed for the detection of hydrogen cyanide gas in consideration of the phenomenon that hydrogen cyanide gas has an absorption peak in the near-infrared region.The changing rules of grating period and diffraction wavelength under the drive of near-infrared light are studied through numerical simulation.A finite element model of grating is established using a multi-physics coupling analysis software, which introduces the optical actuation module into the simulation, and then the influence of light-drive direction on the grating period is analyzed.The results show that when actuating the grating along the grating line, the grating period will decrease with the light-drive time.What is more, the grating period variation of middle part of the grating is larger than that of the margin parts and the maximum tunable range is 21.3 nm.If the grating is actuated perpendicular to the grating line, the grating period will increase with the light-drive time, the grating period variation of middle part of the grating is smaller than that of two side parts, and the maximum tunable range is 100.98 nm.It is clear that both methods can meet the requirements of detecting hydrogen cyanide gas, but if the grating is actuated perpendicular to the grating line, the grating period has a greater change.

      參考文獻/References:

      [1] ASCHWANDEN M, STEMMER A.Polymeric, electrically tunable diffraction grating based on artificial muscles [J].Optics Letters, 2006, 31(17): 2610.
      [2] LIU X, LI T, MING A J, et al.MEMS compressed tunable grating [C]∥International Symposium on Photoelectronic Detection and Imaging 2009: Material and Device Technology for Sensors.Bellingham, WA, USA: SPIE, 2009: 73812L.
      [3] KRISHNAN M B, ROSSET S, BHATTACHARYA S, et al.Fabrication of transmissive dielectric elastomer actuator driven tunable optical gratings with improved tunability [J].Optical Engineering, 2016, 55(4): 047104.
      [4] OUYANG G, WANG K, HENRIKSEN L, et al.A novel tunable grating fabricated with viscoelastic polymer(PDMS)and conductive polymer(PEDOT)[J].Sensors and Actuators: A Physical, 2010, 158(2): 313-319.
      [5] ASCHWANDEN M, BECK M, STEMMER A.Diffractive transmission grating tuned by dielectric elastomer actuator [J].IEEE Photonics Technology Letters, 2007, 19(14): 1090-1092.
      [6] KOLLOSCHE M, DÖRING S, KOFOD G, et al.A novel approach to tunable diffractive transmission gratings based on dielectric elastomer actuators [C]∥Electroactive Polymer Actuators and Devices(EAPAD)2010.Bellingham, WA, USA: SPIE, 2010: 76422Y.
      [7] YANG Y S, LIN Y H, HU Y C, et al.A large-displacement thermal actuator designed for MEMS pitch-tunable grating [J].Journal of Micromechanics and Microengineering, 2009, 19(1): 015001.
      [8] WANG F, JIA S H, WANG Y L, et al.Near-infrared light-controlled tunable grating based on graphene/elastomer composites [J].Optical Materials, 2018, 76: 117-124.
      [9] WU C Z, FENG J, PENG L L, et al.Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli [J].Journal of Materials Chemistry, 2011, 21(46): 18584.
      [10] LOOMIS J, KING B, BURKHEAD T, et al.Graphene-nanoplatelet-based photomechanical actuators [J].Nanotechnology, 2012, 23(4): 045501.
      [11] 崔宏濱.光學基礎教程 [M].合肥: 中國科學技術大學出版社, 2013: 368-386.

      備注/Memo

      備注/Memo:
      收稿日期: 2019-03-15。作者簡介: 張周強(1983—),男,副教授; 胥光申(通信作者),男,教授;痦椖: 國家自然科學基金青年科學基金資助項目(61701384)。
      更新日期/Last Update: 2019-09-04
      秒速赛车开奖官网