<delect id="vb7bx"></delect>

      <object id="vb7bx"><option id="vb7bx"><small id="vb7bx"></small></option></object>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>
      <i id="vb7bx"><option id="vb7bx"><listing id="vb7bx"></listing></option></i>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>

      |本期目錄/Table of Contents|

      [1]曹志杰,馬曉波.Mo部分替代Ti對V40Ti50Fe10合金儲氫性能的影響[J].西安交通大學學報,2019,53(09):137-144.[doi:10.7652/xjtuxb201909018]
       CAO Zhijie,MA Xiaobo.Influence of Partial Substitution of Mo for Ti on Hydrogen Storage Property of V40Ti50Fe10 Alloy[J].Journal of Xi'an Jiaotong University,2019,53(09):137-144.[doi:10.7652/xjtuxb201909018]
      點擊復制

      Mo部分替代Ti對V40Ti50Fe10合金儲氫性能的影響(PDF)

      《西安交通大學學報》[ISSN:0253-987X/CN:61-1069/T]

      卷:
      53
      期數:
      2019年第09期
      頁碼:
      137-144
      欄目:
      出版日期:
      2019-09-10

      文章信息/Info

      Title:
      Influence of Partial Substitution of Mo for Ti on Hydrogen Storage Property of V40Ti50Fe10 Alloy
      作者:
      曹志杰 馬曉波
      寧夏大學物理與電子電氣工程學院, 750021, 銀川
      Author(s):
      CAO Zhijie MA Xiaobo
      School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
      關鍵詞:
      釩基固溶體合金 儲氫性能 放氫平臺壓
      Keywords:
      V-based solid solution alloys hydrogen storage property dehydrogenation plateau pressure
      分類號:
      TG139.7
      DOI:
      10.7652/xjtuxb201909018
      摘要:
      為了考察Mo部分替代Ti對高容量V40Ti50Fe10合金儲氫性能的影響,采用電弧熔煉制備了V40Ti50-xMoxFe10(x=0~30)合金,系統地研究了該系列合金的結構和儲氫性能隨Mo替代Ti含量的變化規律,并探討合金儲氫容量的衰退機制。研究表明:該系列合金均由主相體心立方(BCC)固溶體和少量的C14型Laves第2相組成; Mo取代Ti并未改變合金的主相結構,但Laves第2相的含量明顯降低,合金整體均勻性增加; 隨著Mo含量的增加,BCC相的晶胞體積逐漸減小,合金的放氫量總體呈現下降趨勢但中間出現波動狀態,而放氫平臺壓則持續上升; 在這一系列合金中,V40Ti40Mo10Fe10合金的儲氫性能較優,具有相對寬泛且平坦的放氫壓力平臺,可逆儲氫量較高,且室溫下吸放氫過程均可在5 min內完成。循環測試表明,合金氫化物在吸放氫過程中會形成難以活化的TiFe相,導致合金出現成分分離,影響合金的穩定性,從而造成儲氫容量衰退。
      Abstract:
      To investigate the effects of partial substitution of Mo for Ti on the hydrogen storage property ofV40Ti50Fe10 alloy,V40Ti50-xMoxFe10(x=0 - 30)alloys were prepared by arc melting, and the evolutions of their microstructures and hydrogen storage property were analyzed.Results show that these alloys are composed of main phase BCC solid solution and a small amount of secondary C14 Laves phase.With the increasing of Mo content, the amount of C14 Laves phase obviously decreases, the homogeneity of the alloys increases, and the unit cell volume of BCC phase gradually decreases.Meanwhile the dehydrogenation capacity generally shows a downward trend with several fluctuations, and the dehydrogenation plateau pressure continues to rise.Among these alloys,V40Ti40Mo10Fe10 shows excellent hydrogen storage property with a relatively broad and flat dehydrogenation plateau, high reversible hydrogen storage capacity, and excellent hydrogen absorption and desorption kinetics.Cycling measurements indicate that a new TiFe phase is formed during the dehydrogenation process, which results in the composition segregation of these alloys, thus influencing their stability and reducing their hydrogen storage capacity.

      參考文獻/References:

      [1] YANG S, YANG F, WU C, et al.Hydrogen storage and cyclic properties of(VFe)60(TiCrCo)40-xZrx(0 ≤x≤ 2)alloys [J].Journal of Alloys and Compounds, 2016, 663: 460-465.
      [2] KUMAR S, JAIN A, ICHIKAWA T, et al.Development of vanadium based hydrogen storage material: a review [J].Renewable and Sustainable Energy Reviews, 2017, 72: 791-800.
      [3] MAO Y, YANG S, WU C, et al.Preparation of(FeV80)48Ti26+xCr26(x=0-4)alloys by the hydride sintering method and their hydrogen storage performance [J].Journal of Alloys and Compounds, 2017, 705: 533-538.
      [4] 羅龍, 吳文遠, 邊雪, 等.釩基固溶體貯氫合金的研究進展 [J].稀有金屬, 2017, 41(11): 1265-1272.
      LUO Long, WU Wenyuan, BIAN Xuan, et al.Research progress of vanadium-based solid solution hydrogen storage alloys [J].Chinese Journal of Rare Metals, 2017, 41(11): 1265-1272.
      [5] 杭州明, 肖學章, 翁文祥, 等.Zr部分替代Ti對Ti20Cr24Mn8V40Fe8低釩合金微觀結構和儲氫性能的影響 [J].材料科學與工程學報, 2016, 34(6): 874-877.
      HANG Zhouming, XIAO Xuezhang, WENG Wenxiang, et al.Influence of partial substitution of Zr for Ti in low-vanadium alloy Ti20Cr24Mn8V40Fe8 on its microstructure and hydrogen storage properties [J].Journal of Materials Science and Engineering, 2016, 34(6): 874-877.
      [6] ABDUL J M, CHOWN L H.Influence of Fe on hydrogen storage properties of V-rich ternary alloys [J].International Journal of Hydrogen Energy, 2016, 41(4): 2781-2787.
      [7] RONG M H, WANG F, WANG J, et al.Effect of heat treatment on hydrogen storage properties and thermal stability of V68Ti20 Cr12alloy [J].Progress in Natural Science: Materials International, 2017, 27(5): 543-549.
      [8] NAGASAKO N, FUKUMOTO A, MIWA K.First-principles calculations of C14-type Laves phase Ti-Mn hydrides [J].Physical Review: B, 2002, 66(15): 155106.
      [9] KOJIMA Y, KAWAI Y, TOWATA S I, et al.Development of metal hydride with high dissociation pressure [J].Journal of Alloys and Compounds, 2006, 419(1/2): 256-261.
      [10] VERBETSKY V N, ZOTOV T A, TATARINTSEV A V, et al.Hydrogen sorption properties of V1-xCrx(x=0.1-0.5)alloys [J].Inorganic Materials, 2013, 49(2): 149-152.
      [11] SELVARAJ S, JAIN A, KUMAR S, et al.Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor [J].International Journal of Hydrogen Energy, 2018, 43(5): 2881-2889.
      [12] KUMAR S, SINGH P K, KOJIMA Y, et al.Cyclic hydrogen storage properties of V-Ti-Cr-Al alloy [J].International Journal of Hydrogen Energy, 2018, 43(14): 7096-7101.
      [13] MATSUNAGA T, KON M, WASHIO K, et al.TiCrVMo alloys with high dissociation pressure for high-pressure MH tank [J].International Journal of Hydrogen Energy, 2009, 34(3): 1458-1462.
      [14] ASANO K, HAYASHI S, NAKAMURA Y, et al.Effect of substitutional Cr on hydrogen diffusion and thermal stability for the BCT monohydride phase of the V-H system studied by 1H NMR [J].Journal of Alloys and Compounds, 2012, 524: 63-68.
      [15] ASANO K, HAYASHI S, NAKAMURA Y, et al.Effect of substitutional Mo on diffusion and site occupation of hydrogen in the BCT monohydride phase of V-H system studied by 1H NMR [J].Journal of Alloys and Compounds, 2010, 507(2): 399-404.
      [16] YU X B, WU Z, XIA B J, et al.Hydrogen storage in Ti-V-based body-centered-cubic phase alloys [J].Journal of Materials Research, 2003, 18(11): 2533-2536.
      [17] CHEN X Y, CHEN R R, DING X, et al.Substitution effect of Hf on hydrogen storage capacity and cycling durability of Ti23V40Mn37 metal hydride alloys [J].International Journal of Hydrogen Energy, 2018, 43(42): 19567-19574.
      [18] ZHANG Y N, ZHANG Z, LIU S P, et al.The powder metallurgy performance of Ti-1Al-8V-5Fe alloys with unsaturated titanium hydride [J].Materials and Manufacturing Processes, 2018, 33(16): 1830-1834.
      [19] BIBIENNE T, GOSSELIN C, BOBET J L, et al.Replacement of vanadium by ferrovanadium in a Ti-based body centred cubic(BCC)alloy: towards a low-cost hydrogen storage material [J].Applied Sciences, 2018, 8(7): 1151.
      [20] 李朵, 婁豫皖, 杜俊霖, 等.添加Mn和Co對V80Ti8Cr12合金儲氫性能的影響 [J].功能材料與器件學報, 2015, 21(5): 145-149.
      LI Duo, LOU Yuwan, DU Junlin, et al.Effects of Mn and Co addition on hydrogen storage properties of V80Ti8Cr12 alloy [J].Journal of Functional Materials and Devices, 2015, 21(5): 145-149.
      [21] SHENC C, WUK C, LIH C, et al.Influence of interstitial carbon on the formation of monohydride and dihydride of Ti25V35Cr40 alloys [J].Materials Chemistry and Physics, 2015, 151: 87-92.
      [22] ZHOU H Y, WANG F, WANG J, et al.Hydrogen storage properties and thermal stability of Ti25V35Cr40alloy by heat treatment [J].International Journal of Hydrogen Energy, 2014, 39(27): 14887-14895.
      [23] PANG C, WANG Q, CHE J D, et al.Ta/Zr-alloyed V-Cr-Ti alloys via a cluster-plus-glue-atom model for BCC solid solutions [J].Transactions of the Indian Institute of Metals, 2016, 69(8): 1557-1562.
      [24] KURZINA I, POPOVA N, KALASHNIKOV M, et al.Peculiarities of structure and phase composition of V-Ti-Cr alloy obtained by sintering technique [J].Journal of Physics: Conference Series, 2019, 1145: 012051.
      [25] LUO L, LI Y Z, ZHAI T T, et al.Microstructure and hydrogen storage properties ofV48Fe12Ti15-xCr25Al(x=0, 1)alloys [J/OL].International Journal of Hydrogen Energy, 2019 [2018-12-20].https: ∥doi.org/10.1016/j.ijhydene.2019.02.172.
      [26] 葛紅衛, 劉劍, 范修林, 等.(Ti-Cr)40V55Zr5儲氫合金的熱處理改性 [J].材料科學與工程學報, 2008, 26(4): 567-569.
      GE Hongwei, LIU Jian, FAN Xiulin, et al.Modification by heat treatment for(Ti-Cr)40V55Zr5 hydrogen storage alloy [J].Journal of Materials Science and Engineering, 2008, 26(4): 567-569.
      [27] MOURI T, IBA H.Hydrogen-absorbing alloys with a large capacity for a new energy carrier [J].Materials Science and Engineering: A, 2002, 329: 346-350.
      [28] SMITH J F.The Mo-V system(molybdenum-vanadium)[J].Journal of Phase Equilibria, 1992, 13(1): 50-53.
      [29] ASANO K, HAYASHI S, NAKAMURA Y.Formation of hydride phase and diffusion of hydrogen in the V-H system varied by substitutional Fe [J].International Journal of Hydrogen Energy, 2016, 41(15): 6369-6375.
      [30] ASANO K, HAYASHI S, NAKAMURA Y.Enhancement of hydrogen diffusion in the body-centered tetragonal monohydride phase of the V-H system by substitutional Al studied by proton nuclear magnetic resonance [J].Acta Materialia, 2015, 83: 479-487.
      [31] CAO Z J, OUYANG L Z, WANG H, et al.Development of Zr-Fe-V alloys for hybrid hydrogen storage system [J].International Journal of Hydrogen Energy, 2016, 41(26): 11242-11253.
      [32] KUMAR S.Theoretical analysis of hysteresis during hydrogen transformations in the vanadium-hydrogen system [J].International Journal of Hydrogen Energy, 1995, 20(3): 211-220.
      [33] REILLY J J, WISWALL R H.Formation and properties of iron titanium hydride [J].Inorganic Chemistry, 1974, 13(1): 218-222.
      [34] EMAMI H, EDALATI K, MATSUDA J, et al.Hydrogen storage performance of TiFe after processing by ball milling [J].Acta Materialia, 2015, 88: 190-195.
      [35] VEGA L E R, LEIVA D R, LEAL NETO R M, et al.Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere [J].International Journal of Hydrogen Energy, 2018, 43(5): 2913 -2918.
      [36] ENDO N, SAITA I, NAKAMURA Y, et al.Hydrogenation of a TiFe-based alloy at high pressures and temperatures [J].International Journal of Hydrogen Energy, 2015, 40(8): 3283-3287.
      [37] ZEAITER A, NARDIN P, POUR YAZDI M A, et al.Outstanding shortening of the activation process stage for a TiFe-based hydrogen storage alloy [J].Materials Research Bulletin, 2019, 112: 132-141.

      備注/Memo

      備注/Memo:
      收稿日期: 2019-01-03。作者簡介: 曹志杰(1989—),男,博士,副教授;痦椖: 寧夏大學自然科學研究基金資助項目(ZR1713); 國家自然科學基金青年科學基金資助項目(51801107)。
      更新日期/Last Update: 2019-09-04
      秒速赛车开奖官网