<delect id="vb7bx"></delect>

      <object id="vb7bx"><option id="vb7bx"><small id="vb7bx"></small></option></object>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>
      <i id="vb7bx"><option id="vb7bx"><listing id="vb7bx"></listing></option></i>
      <optgroup id="vb7bx"><del id="vb7bx"></del></optgroup>

      |本期目錄/Table of Contents|

      [1]李繼宸,朱惠人,陳大為,等.尾跡影響下有復合角扇形孔渦輪葉片表面的氣膜冷卻效率實驗研究[J].西安交通大學學報,2019,53(09):167-175.[doi:10.7652/xjtuxb201909022]
       LI Jichen,ZHU Huiren,CHEN Dawei,et al.Experimental Study on Film Cooling Effectiveness of the Turbine Blade with Compound-Angled Fan-Shaped Holes under Wake Influence[J].Journal of Xi'an Jiaotong University,2019,53(09):167-175.[doi:10.7652/xjtuxb201909022]
      點擊復制

      尾跡影響下有復合角扇形孔渦輪葉片表面的氣膜冷卻效率實驗研究(PDF)

      《西安交通大學學報》[ISSN:0253-987X/CN:61-1069/T]

      卷:
      53
      期數:
      2019年第09期
      頁碼:
      167-175
      欄目:
      出版日期:
      2019-09-10

      文章信息/Info

      Title:
      Experimental Study on Film Cooling Effectiveness of the Turbine Blade with Compound-Angled Fan-Shaped Holes under Wake Influence
      作者:
      李繼宸1 朱惠人1 陳大為1 陳剛2 周道恩1
      1.西北工業大學動力與能源學院, 710072, 西安; 2.中國航發沈陽發動機研究所, 110015, 沈陽
      Author(s):
      LI Jichen1 ZHU Huiren1 CHEN Dawei1 CHEN Gang2 ZHOU Daoen1
      1.School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China; 2.AECC Shenyang Engine Institute, Shenyang 110015, China
      關鍵詞:
      復合角扇形孔 尾跡 氣膜冷卻效率 壓敏漆 渦輪葉片
      Keywords:
      compound-angled fan-shaped hole wake film cooling effectiveness pressure sensitive paint turbine blade
      分類號:
      V231.1
      DOI:
      10.7652/xjtuxb201909022
      摘要:
      為研究尾跡影響下帶有復合角扇形孔的渦輪葉片的氣膜冷卻效率變化規律,利用壓敏漆技術獲得了不同質量流量比、不同尾跡斯特勞哈爾數(0、0.12、0.36)下的渦輪葉片表面氣膜冷卻效率分布。研究結果表明:氣膜孔復合角有利于射流的橫向擴散,孔下游射流的覆蓋面積較大; 在無尾跡條件下,質量流量比的增加使得帶有復合角氣膜孔的渦輪葉片前緣與壓力面大部分區域的氣膜冷卻效率提高,使得吸力面氣膜冷卻效率下降,吸力面靠近葉頂的低氣膜冷卻效率區域面積變小; 在尾跡條件下,質量流量比的增加使得前緣、壓力面以及吸力面靠近尾緣區域的氣膜冷卻效率提高,使得吸力面其他區域的氣膜冷卻效率降低; 尾跡會使葉片表面氣膜冷卻效率顯著降低,在尾跡斯特勞哈爾數為0.36的條件下,小質量流量比時葉片表面氣膜冷卻效率的平均降幅為35%,大質量流量比時平均降幅為26%,氣膜冷卻效率的下降幅度減小。
      Abstract:
      The film cooling effectiveness of the turbine blade with compound-angled fan-shaped holes was measured by the pressure sensitive paint technique.The wake's Strouhal number was varied from 0 to 0.36 and three mass flux ratios were determined.Results show that the compound-angled holes can enhance the lateral spreading of coolant, and the injection has a wider coverage area without wakes.The increase of the mass flux ratio causes an increase in the film cooling effectiveness over the leading edge and most area of the pressure surface with compound-angled holes, but a decrease on the suction surface.The increase of mass flux ratio also reduces the area near the tip on the suction side, where the film coverage is insufficient under wake influence, and causes an increase in the film cooling effectiveness over the leading edge, the pressure surface and the suction surface near the trailing edge, but decreases this effectiveness on the mid-chord region of the suction surface.The wake causes a remarkable decrease in the film cooling effectiveness over the blade surface.In the case that wake's Strouhal number is 0.36, the average film cooling effectiveness over the blade is decreased by 35% under the condition of low mass flux ratio, and decreased by 26% under the condition of high mass flux ratio.

      參考文獻/References:

      [1] BUNKER R S.Evolution of turbine cooling: ASME GT2017-63205 [R].New York, USA: ASME, 2017: 1-26.
      [2] 徐紅洲, 劉松齡, 許都純.單孔復合角氣膜冷卻的流動與傳熱的實驗研究 [J].推進技術, 1996, 17(6): 12-17.
      XU Hongzhou, LIU Songling, XU Duchun.Experiment investigation on flow and heat transfer around single film cooling hole with compound-angle [J].Journal of Propulsion Technology, 1996, 17(6): 12-17.
      [3] EKKAD S V, ZAPATA D, HAN J C.Film effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method [J].ASME Journal of Turbomachinery, 1997, 119: 587-593.
      [4] HAYDT S, LYNCH S.Cooling effectiveness for a shaped film cooling hole at a range of compound angles: ASME GT2018-75726 [R].New York, USA: ASME, 2018: 1-15.
      [5] HAN B, DONG K S, LEE J S.Flow and heat transfer measurements of film injectant from a row of holes with compound angle orientations [J].KSME International Journal, 2002, 16(9): 1137-1146.
      [6] 張宗衛, 朱惠人, 劉聰, 等.全表面冷卻葉片表面換熱系數和冷卻效率研究 [J].西安交通大學學報, 2012, 46(7): 103-107.
      ZHANG Zongwei, ZHU Huiren, LIU Cong, et al.Heat transfer coefficient and film cooling effectiveness on a full-film cooling vane [J].Journal of Xi'an Jiaotong University, 2012, 46(7): 103-107.
      [7] NASIR H, EKKAD S V, ACHARYA S.Effect of compound angle injection on flat surface film cooling with large streamwise injection angle [J].Experimental Thermal & Fluid Science, 2001, 25(1): 23-29.
      [8] LEE H W, PARK J J, LEE J S.Flow visualization and film cooling effectiveness measurements around shaped holes with compound angle orientations [J].International Journal of Heat & Mass Transfer, 2002, 45(1): 145-156.
      [9] JUBRAN B A, MAITEH B Y.Film cooling and heat transfer from a combination of two rows of simple and/or compound angle holes in inline and/or staggered configuration [J].Heat & Mass Transfer, 1999, 34(6): 495-502.
      [10] WANG N, ZHANG M, SHIAU C C, et al.Film cooling effectiveness from two-row of compound angled cylindrical holes using PSP technique: ASME GT2018-75167 [R].New York, USA: ASME, 2018: 1-11.
      [11] 洪博文, 溫風波, 王松濤, 等.氣冷渦輪前緣冷氣射流角度優化研究 [J].推進技術, 2014, 35(12): 1653-1660.
      HONG Bowen, WEN Fengbo, WANG Songtao, et al.Optimization research of cooling gas injection angle at leading edge of air-cooled turbine [J].Journal of Propulsion Technology, 2014, 35(12): 1653-1660.
      [12] MHETRAS S, HAN J C.Effect of unsteady wake on full coverage film-cooling effectiveness for a gas turbine blade: AIAA 2006-3403 [R].San Diego, USA: AIAA, 2006: 1-17.
      [13] MAHADEVAN S, KUTLU B F, GOLSEN M J, et al.Experimental study of unsteady wake effect on a film-cooled pitchwise-curved surface [J].International Journal of Heat & Mass Transfer, 2015, 83: 118-135.
      [14] FUNAZAKI K, SASAKI Y, TANUMA T.Experimental studies on unsteady aerodynamic loss of a high-pressure turbine cascade: ASME 97-GT-52 [R].New York, USA: ASME, 1997: 1-10.
      [15] GOLSEN M, RICKLICK M, KAPAT J.Investigation on the effects of wake rod to film cooling hole diameter ratio in unsteady wake studies: AIAA 2011-6096 [R].San Diego, USA: AIAA, 2011: 1-13.
      [16] RALLABANDI A P, LI S J, HAN J C.Unsteady wake and coolant density effects on turbine blade film cooling using PSP technique [J].ASME Journal of Heat Transfer, 2012, 134(8): 081701.
      [17] NARZARY D P, GAO Z, MHETRAS S, et al.Effect of unsteady wake on film-cooling effectiveness distribution on a gas turbine blade with compound shaped holes: ASME GT2007-27070 [R].New York, USA: ASME, 2007: 1-13.
      [18] 蔣雪輝, 趙曉路.非定常尾跡對葉柵氣膜冷卻效率的影響 [J].推進技術, 2004, 25(4): 311-315.
      JIANG Xuehui, ZHAO Xiaolu.Effect of unsteady wake on linear cascade film cooling efficiency [J].Journal of Propulsion Technology, 2004, 25(4): 311-315.
      [19] CHEN Dawei, ZHU Huiren, LIU Cunliang, et al.Combined effects of unsteady wake and free-stream turbulence on turbine blade film cooling with laid-back fan-shaped holes using PSP technique [J].International Journal of Heat and Mass Transfer, 2019, 133: 382-392.
      [20] 李虹楊, 鄭赟.動靜干涉對渦輪轉子葉片氣膜冷卻的影響 [J].北京航空航天大學學報, 2016, 42(1): 139-146.
      LI Hongyang, ZHENG Yun.Effect of rotor-stator interaction on film-cooling of turbine blade [J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 139-146.
      [21] 李軍, 王金山, 蔣勇, 等.凹槽狀動葉頂部非定常氣膜冷卻性能研究 [J].西安交通大學學報, 2010, 44(5): 5-9.
      LI Jun, WANG Jinshan, JIANG Yong, et al.Investigations of unsteady film cooling performance on rotor squealer tip [J].Journal of Xi'an Jiaotong University, 2010, 44(5): 5-9.
      [22] O'BRIEN J E, CAPP S P.Two-component phase-averaged turbulence statistics downstream of a rotating spoked-wheel wake generator [J].ASME Journal of Turbomachinery, 1989, 111(10): 475-482.
      [23] GAO Z H, DIGANTA N, HAN J C.Turbine blade platform film cooling with typical stator-rotor purge flow and discrete-hole film cooling: ASME GT2008-50286 [R].New York, USA: ASME, 2008: 1-12.
      [24] 陳大為, 朱惠人, 李華太, 等.基于壓力敏感漆技術的尾跡對渦輪動葉前緣氣膜冷卻影響研究 [J].推進技術, 2019, 40(4): 858-865.
      CHEN Dawei, ZHU Huiren, LI Huatai, et al.Effect of unsteady wake on leading edge film cooling of turbine blade using PSP technique [J].Journal of Propulsion Technology, 2019, 40(4): 858-865.
      [25] HAN J C, RALLABANDI A P.Turbine blade film cooling using PSP technique [J].Frontiers in Heat Pipes, 2010, 1(1): 227-237.
      [26] KAYS W M, CRAWFORD M E, WEIGAND B.對流傳熱與傳質 [M].趙鎮南, 譯.北京: 高等教育出版社, 2007: 345.
      [27] KLINE S J, MCCLINTOCK F A.Describing uncertainties in single-sample experiments [J].ASME Journal of Mechanical Engineering, 1953, 75: 3-8.
      [28] 李佳.燃氣輪機透平氣膜冷卻機理的實驗與理論研究 [D].北京: 清華大學, 2011: 39-40.
      [29] MCGOVERN K T, LEYLEK J H.A detailed analysis of film cooling physics: Part Ⅱ Compound-angle injection with cylindrical holes [J].ASME Journal of Turbomachinery, 2000, 122: 113-121.
      [本刊相關文獻鏈接]
      劉璐萱,李志剛,李軍.進口端壁不重合對跨聲速透平葉柵端壁流動和傳熱特性影響的研究.2018,52(11):37-44.[doi:10.7652/xjtuxb201811006]
      張塏垣,李志剛,宋立明,等.槽縫射流旋流比和密度比對渦輪端壁冷卻和吸力面泛冷卻性能的影響.2018,52(9):95-101.[doi:10.7652/xjtuxb201809013]
      孟通,朱惠人,劉存良,等.渦輪葉片雙排氣膜冷卻效率疊加計算準確性研究.2018,52(4):55-62.[doi:10.7652/xjtuxb 201804008]
      劉存良,謝剛,朱惠人.高主流湍流度下傾斜角對圓柱孔氣膜冷卻特性影響的實驗研究.2018,52(1):47-53.[doi:10.7652/xjtuxb201801008]
      范小軍,杜長河,李亮,等.4種冷卻結構對葉片前緣流動換熱影響的比較研究.2017,51(7):37-43.[doi:10.7652/xjtuxb201707006]
      杜長河,范小軍,李亮,等.旋轉半徑和葉片安裝角對動葉旋流冷卻流動和傳熱特性的影響.2017,51(5):37-42.[doi:10.7652/xjtuxb201705006]
      杜長河,范小軍,李亮,等.抽吸孔對旋流和沖擊冷卻流動傳熱特性的影響.2017,51(1):19-24.[doi:10.7652/xjtuxb 201701004]

      備注/Memo

      備注/Memo:
      收稿日期: 2019-03-28。作者簡介: 李繼宸(1996—),男,碩士生; 朱惠人(通信作者),男,教授,博士生導師;痦椖: 國家重點基礎研究發展規劃資助項目(2013CB035702)。
      更新日期/Last Update: 2019-09-04
      秒速赛车开奖官网